Regulation of GSK-3beta by calpain in the 3-nitropropionic acid model.
نویسندگان
چکیده
Glycogen synthase kinase-3beta (GSK-3beta) is a crucial component in the cascade of events that culminate in a range of neurodegenerative diseases. It is controlled by several pathways, including calpain-mediated cleavage. Calpain mediates in cell death induced by 3-nitropropionic acid (3-NP), but GSK-3beta regulation has not been demonstrated. Here we studied changes in total GSK-3beta protein levels and GSK-3beta phosphorylation at Ser-9 in this model. The 3-NP treatment induced GSK-3beta truncation. This regulation was dependent on calpain activation, since addition of calpeptin to the medium prevented this cleavage. While calpain inhibition prevented 3-NP-induced neuronal loss, inhibition of GSK-3beta by SB-415286 did not. Furthermore, inhibition of cdk5, a known target of calpain involved in 3-NP-induced cell death, also failed to rescue neurons in our model. Our results point to a new target of calpain and indicate possible cross-talk between calpain and GSK-3beta in the 3-NP toxicity pathway. On the basis of our findings, we propose that calpain may modulate 3-NP-induced neuronal loss.
منابع مشابه
Lithium treatment decreases activities of tau kinases in a murine model of senescence.
Lithium modulates glycogen synthase kinase 3beta (GSK-3beta), a kinase involved in Alzheimer disease-related tau pathology. To investigate mechanisms of aging and the potential therapy of lithium in neurodegenerative disease, we treated senescence-accelerated mouse (SAM)P8 mice, a murine model of senescence, and mice of the control SAMR1 strain with lithium. The treatment reduced hippocampal ca...
متن کاملExogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta.
The purpose of this study was to determine whether exogenous zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via glycogen synthase kinase-3beta (GSK-3beta). The treatment of cardiac H9c2 cells with ZnCl2 (10 microM) in the presence of zinc ionophore pyrithione for 20 min significantly enhanced GSK-3beta phosphorylation at Ser9, indicat...
متن کاملIn vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3.
The role of caspases and calpains in neurodegeneration remains unclear. In this study, we focused on these proteases in a rat model of Huntington's disease using the mitochondrial toxin 3-nitropropionic acid (3NP). Results showed that 3NP-induced death of striatal neurons was preceded by cytochrome c redistribution, transient caspase-9 processing, and activation of calpain, whereas levels of th...
متن کاملEndoplasmic Reticulum Stress in Diabetic Hearts Abolishes Erythropoietin-Induced Myocardial Protection by Impairment of Phospho–Glycogen Synthase Kinase-3β–Mediated Suppression of Mitochondrial Permeability Transition
OBJECTIVE Alteration in endoplasmic reticulum (ER) stress in diabetic hearts and its effect on cytoprotective signaling are unclear. Here, we examine the hypothesis that ER stress in diabetic hearts impairs phospho-glycogen synthase kinase (GSK)-3beta-mediated suppression of mitochondrial permeability transition pore (mPTP) opening, compromising myocardial response to cytoprotective signaling. ...
متن کاملCalpain facilitates the neuron death induced by 3-nitropropionic acid and contributes to the necrotic morphology.
3-Nitropropionic acid (3NP), an irreversible inhibitor of succinate dehydrogenase, has been used to model features of neurodegenerative disorders including Huntington disease, as well as acute neuronal insults such as cerebral ischemia. 3NP induces rapid necrosis and delayed apoptosis in primary cultures of rat hippocampal neurons. Low levels of extracellular glutamate shift the cell death mech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hippocampus
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2010